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a b s t r a c t

Robust perception is an essential component to enable long-term operation of mobile robots. It
depends on failure resilience through reliable sensor data and pre-processing, as well as failure
awareness through introspection, for example the ability to self-assess localization performance. This
paper presents CorAl: a principled, intuitive, and generalizable method to measure the quality of
alignment between pairs of point clouds, which learns to detect alignment errors in a self-supervised
manner. CorAl compares the differential entropy in the point clouds separately with the entropy in
their union to account for entropy inherent to the scene. By making use of dual entropy measurements,
we obtain a quality metric that is highly sensitive to small alignment errors and still generalizes well
to unseen environments. In this work, we extend our previous work on lidar-only CorAl to radar data
by proposing a two-step filtering technique that produces high-quality point clouds from noisy radar
scans. Thus, we target robust perception in two ways: by introducing a method that introspectively
assesses alignment quality, and by applying it to an inherently robust sensor modality. We show that
our filtering technique combined with CorAl can be applied to the problem of alignment classification,
and that it detects small alignment errors in urban settings with up to 98% accuracy, and with up
to 96% if trained only in a different environment. Our lidar and radar experiments demonstrate that
CorAl outperforms previous methods both on the ETH lidar benchmark, which includes several indoor
and outdoor environments, and the large-scale Oxford and MulRan radar data sets for urban traffic
scenarios. The results also demonstrate that CorAl generalizes very well across substantially different
environments without the need of retraining.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

For mobile robots to be truly resilient to possible failure
auses, during long-term hands-off operation in difficult envi-
onments, robust perception needs to be addressed on several
evels. Robust perception depends on failure resilience as well as
ailure awareness. Several stages of the perception pipeline are
ffected: from the sensory measurements themselves (sensors
hould generate reliable data also under difficult environmental
onditions), via algorithms for registration, mapping, localization,
tc, to introspection (by which we mean self-assessment of the
obot’s performance).

✩ This work has received funding from the Swedish Knowledge Founda-
tion (KKS) projects ‘‘TeamRob’’ and ‘‘NiCE’’, VINNOVA project ‘‘TAMMP’’ no
2019-05878, and the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017274 (DARKO).
∗ Corresponding author.
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This paper presents novel work on robust perception that
addresses both ends of this spectrum, namely CorAl (from ‘‘Cor-
ectly Aligned?’’); a method to introspectively measure and detect
isalignments between pairs of point clouds. In particular, we
how how it can be applied to range data both from lidar and
adar scanners; which means that it is well suited for robust
avigation in all-weather conditions.
Lidar sensing is, compared to visual sensors, inherently more

naffected by poor lighting conditions (darkness, shadows, strong
unlight). Radar is furthermore unaffected by low visibility due
o fog, dust, and smoke. However, radar as a range sensor has
ather different characteristics than lidar, and interpreting radar
ata (e.g., for localization) has been considered challenging due
o high and environment-dependent noise levels, multi-path re-
lections, speckle noise, and receiver saturation. In this work we
emonstrate how radar data can be effectively filtered to produce
igh-quality point clouds; and how even small misalignments can
e reliably detected.
Many perception tasks, including odometry estimation [1],
ocalization in map [2], and sensor calibration [3], rely on point
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Fig. 1. CorAl, depicted in blue, operates on a pair of point clouds Pa,Pb and can
classify misalignment (ypred) by comparing the differential entropy in the point
clouds separately and jointly. Additionally, CorAl outputs a per-point quality
measure q that highlights misaligned parts.

cloud registration. However, registration sometimes provides in-
correct estimates; e.g., due to local minima of the registration
cost function [4], uncompensated motion distortion [5], rapid
rotation (leading to poor initial pose estimates) [6], or when the
registration problem is geometrically under-constrained [7,8].

Consequently, it is essential to equip these methods with fail-
ure awareness by measuring alignment quality so that misaligned
point clouds can be rejected or re-aligned. While a number of
measures of alignment quality already exist, it is typically not
easy to set a threshold to detect poor alignments that can be
used in different environments — as we also demonstrate in
our experimental validations (see Sections 4 and 5). A particular
benefit of the CorAl method is that it generalizes well, so that if
it has been trained in one environment, the same parameters can
be used in other, unseen, environments.

Some examples of methods that have been used in prac-
tice to assess the alignment quality include point-to-point or
point-to-plane distances [9,10], point-to-distribution [11,12] or
distribution-to-distribution [13,14] likelihood estimates, mean
map entropy [15] or dense radar-image comparison [16]. How-
ever, except for some notable exceptions [12,17], few studies
in the literature have specifically and methodically targeted the
measurement of alignment correctness.

Our method, CorAl, is well-grounded in information theory
and gives an intuitive alignment correctness measure. Fig. 1
shows the general outline of the method, and Fig. 2 illustrates the
output per-point alignment measure for a pair of point clouds.
CorAl computes the average differential entropy in two point
clouds, exploiting the difference when the entropy is computed
for each point cloud separately, compared to the union of the
point clouds. For well-aligned point clouds, the joint and the
separate point clouds will have similar entropy. In contrast,
misaligned point clouds tend to ‘‘blur’’ the scene, which can be
measured as an increase in joint entropy as depicted in Fig. 3. A
key idea is to estimate the entropy inherent in the scene from
the entropy in the separate point clouds, which enables CorAl
to accurately assess quality in a range of different environments.
In short, our previous paper CorAl [17] provided the following
contributions:

• A simple and intuitive measure of alignment correctness
between point cloud pairs that generalize well.
• Highlighting of regions that indicate misalignment.
• Self-supervised learning of decision boundaries from accu-

rately aligned scans with poses.

This paper extends our previous work on CorAl by showing
how it can be applied to FMCW (frequency-modulated continu-
ous wave) radar data, thus pushing further towards truly robust
perception, and includes quantitative evaluations on two new
large-scale benchmarks and four new baselines. In summary, we
present the following new contributions:

• A novel radar filtering strategy ("radar intensity peak fea-
tures") that allows CorAl to operate on noisy radar data, en-
abling alignment classification of small errors with high ac-
curacy compared to previous radar feature extraction meth-
ods in urban traffic settings.
2

Fig. 2. (a, b): Differential entropy in point clouds separately. Colors range from
red (low entropy) to blue and violet (high entropy). (c, d): The joint point cloud
(Pa ∪ Pb) colored by per-point quality measure qk(Pa,Pb) when aligned (c)
and when misaligned (d). Blue and red indicate alignment and misalignment
respectively.

Fig. 3. Example how uncertainty (entropy) is preserved when joining aligned
point clouds Pa ∪Pb (left), but increases when joining misaligned point clouds
(right). The entropy for aligned point clouds should be similar to the entropy in
the separate point clouds and can be used when quantifying alignment quality.

• An ablation study that investigates parameter importance
and how practical factors such as error magnitude and vari-
ation in distance between scans influence classification per-
formance.
• The first investigation (to our knowledge) that systemat-

ically evaluates alignment correctness classification using
radar-based feature extraction and quality metrics without
the aid of auxiliary sensors.
• We include 4 new baselines based on recent research within

spinning radar odometry.
• A cross-environment study that demonstrates that CorAl

generalizes to new environments without retraining.
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2. Related work

2.1. Cost functions for scan registration

In practice, it is common to use the cost function of a scan
egistration method to estimate the alignment quality after reg-
stration.

One well-used alignment measure is the root-mean-squared
RMS) point-to-point distance, truncated by some outlier rejec-
ion threshold. This is also the function that is minimized by
terative closest point registration [10,18]. However, this measure
as been shown to be highly sensitive to the environment and
he choice of the outlier threshold [12,19] when trying to detect
mall errors. Consequently, this is a poor measure for alignment
orrectness classification.
Another common alternative is the point-to-line distance [9,

0] or – as a generalization – a point-to-distribution [11,20]
r distribution-to-distribution [13] measure; where local surface
escriptors are computed using the spatial distribution of points
ithin a neighborhood. In a similar vein, Liao et al. [14] propose
istribution-to-distribution registration based on fuzzy clusters,
nd estimate coarse alignment quality via the dispersion and
isposition of points around fuzzy cluster centers. These methods
ave also been shown to generalize poorly for assessing 3D lidar
can alignment in different environments [17].

.2. Fault detection and uncertainty estimation

Going beyond merely setting a threshold for the registration
ost function, there are also some methods that have been de-
ised specifically for fault detection and uncertainty estimation.
Huan et al. [21] presented a failure detection based on logistic

egression using point cloud overlap, differences between 2d
oint cloud projections, mean and deviation of point-to-point dis-
ance and similarity of normals. They show that various metrics
an be combined for increased accuracy, however the work does
ot explicitly focus on detecting small errors and instead includes
rrors up to 5 m.
Makadia et al. [22] use consistency between normals (‘‘plane-

o-plane‘‘) as a post-registration alignment measure, where nor-
als are computed from voxelized versions of two point clouds.

n an independent evaluation [12], this method was found to
erform poorly in unstructured outdoor environments.
Nobili et al. [7] proposed a method to predict alignment risk

rior to registration by combining overlap information and an
lignment metric that quantifies the geometric constraints in the
egistration problem. Their alignment metric is based on point-
o-plane residuals and has been evaluated in structured scenes
ith planar surfaces. In contrast, the method we propose in
his paper can operate well even in unstructured environments.
dditionally, our method seeks to estimate the alignment after
egistration has been completed to introspectively measure the
egistration success, as opposed to predicting the risk prior to
egistration.

Akai et al. [23] estimate reliability of vehicle localization from
rid map and laser scan data, using a convolutional neural net-
ork (CNN). In our work, we are interested in alignment classifi-
ation without prior knowledge for pairs of point clouds. Aldera
t al. [24] learn detection of odometry failures in challenging con-
itions using weak supervision from IMU or GPS. Their method
nalyzes eigenvectors of a pairwise compatibility matrix which
ontains scores between point correspondences. Finally, Sundvall
nd Jensfelt [25] propose a method for fault detection with re-
undant positioning systems. In contrast, our method operates on
idar or radar without the need for any additional sensors during
eployment and uses odometry or optionally ground truth during

raining.

3

A family of methods assessing alignment uncertainty based
on an estimate of the pose covariance can be found in [11,26–
31]. Some of these use a Monte Carlo method and estimate
uncertainty by sampling registrations in a region [27]. For mobile
robotics, sampling strategies are tedious and unpractical. Other
methods compute covariance in closed form based on the Hessian
of the quality metric [11,30] or from pose samples weighted by
dense correlation [16,31]. However, it is not generally possible
to define a fixed set of covariance thresholds to distinguish good
from bad alignments.

Bogoslavskyi and Stachniss [32] define a quality metric that
takes into account free-space information, and use it to measure
alignment error between range images of segmented 3D objects
in a controlled experiment. Rather than focusing on objects, our
method aims to classify the alignment quality of observed scenes
in different environments. Additionally, their method operates
on range images, which might not be easily available, while our
method operates on unorganized point clouds.

Some methods work on the scale of a full map, rather than
individual scans. Chandran-Ramesh and Newman [33] convert
a point cloud map into plane patches and train a conditional
random field to detect plausible and suspicious plane config-
urations. This method is not directly applicable for assessing
pairwise point cloud alignment. Droeschel and Behnke [15] com-
pute mean map entropy to measure the ‘‘crispness’’ of a point
cloud map, with the aim to evaluate accuracy of scan registra-
tion in lieu of ground truth pose data. Our work is inspired by
this measure but, as further detailed and demonstrated below,
mean map entropy does not generalize between structured and
semi-structured environments.

2.3. Feature extraction and quality assessment for spinning radar

Lidar is a well-investigated sensor modality in robot percep-
tion. Spinning FMCW radar is an alternative modality that has
been receiving more attention in recent years, due to it being
resilient to low-visibility conditions. However, due to its challeng-
ing noise characteristics, how to efficiently interpret the data for
robot perception is still considered an open research question.
Hence, in our investigation of radar we include both feature
extraction and quality assessment. Radar-based methods that
use alignment quality measures can be categorized into dense
methods [16,34,35], which operate on raw radar images and do
not explicitly perform data association, and sparse methods [1,
36–43], which compute alignment quality using keypoint loca-
tions, shape and descriptors over a correspondence set. Previous
sparse methods use (weighted) Point-to-Point [39,41,42], Point-
to-distribution [43] and Point-to-Line [1] metrics. Key points
can be extracted via SURF, blob detection [36], gradient-based
feature detectors [41,42], by a set of oriented surface points [1]
or distributions [43] using a grid-based approach, or by semi-
supervised [39] and unsupervised [40] deep learning methods.

While these methods for feature extraction and alignment
quality have been used as objective functions for the purpose of
estimating odometry, it is currently not known to which extent
these metrics can be used for alignment correctness classification.
Previous work shows that the performance of deep learning-
based odometry methods can decrease in new unseen environ-
ments [16]. However, some methods have been successful in
estimating odometry and performing SLAM in widely different
environments without deep learning and even without parameter
tuning [1,36]. In this paper, we show that a learning-free feature
extraction method can produce stable key points over multiple
environment types, suitable for alignment correctness classifi-
cation in diverse environments. Hence, we can forego (deep)
learning for feature extraction and only use logistic regression at
the classification stage to learn linear decision boundaries, which
ultimately only requires two parameters to be trained.
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2.4. Comparative studies of alignment assessment

Most of the methods above have been used in a more or
ess ad-hoc manner. Few systematic evaluations and comparative
tudies have been made on investigating their general capability
or the task of alignment classification between point clouds
airs, i.e. to detect aligned vs. misaligned ones. Two evaluations
n this direction were presented by Almqvist et al. [12] and in on
ur previous work CorAl [17] where a range of quality metrics
as used to train classifiers using logistic regression. Almqvist
t al. explored alignment classifiers based on point-to-point dis-
ances as well as a number of other methods [10,11,19,33,44,45],
nd investigated how to combine the measures with AdaBoost
nto a stronger classifier. The classifiers were evaluated on two
utdoor data sets, and although the best ones reached almost
0% accuracy for the hardest cases on each data set individually,
ccuracy drops to around 80% when cross-evaluating between the
ata sets. In their evaluations, the NDT score function [11] proved
o be the best individual measure for alignment assessment. The
ombined AdaBoost classifier did not have significantly higher
ccuracy, but reduced parameter sensitivity. Our previous work
onfirms the finding by Almqvist: that detecting small alignment
rrors in a diverse range of environments without retraining is
hallenging.

. Coral method

Our work takes inspiration from Droeschel and Behnke [15]
ho used differential entropy measurements to assess map qual-

ty. The differential entropy measures the uncertainty or surprisal
f a continuous variable, in their case for (3-dimensional) vari-
bles X ∈ R3 with multivariate Gaussian distribution X ∼
3(µ, Σ). Distributions are approximated by the sample mean

and covariance of local point distribution within a radius r . In
heir work, they compute the ‘‘Mean-Map-Entropy’’ (MME), de-
ined as the average per-point differential entropy over a set
f point clouds, and use the measure to compare methods for
idar map refinement algorithms without the need for ground
ruth measurements and without imposing planar assumptions.
s the entropies measure surprisal, everything else being equal,
lower MME measure can be interpreted as less surprisal or

risper point clouds and indicate the success of map refinement.
hile MME is suitable for and has been used to quantify rel-

tive alignment improvement [46,47], the metric additionally
epends on sensor noise and sample density and is highly depen-
ent on scene geometry. Consequently, and as confirmed by our
valuation, the metric does not generalize over, e.g. structured
nd semi-structured environments. For that reason, we overcome
ensitivity to variation in scene geometry by making use of dual
ntropy measurements computed 1) in point clouds separately
nd 2) in the joint point cloud. Intuitively, when joining a well-
ligned point cloud pair, the entropy (or the blur) found in the
oint point cloud should not increase compared to the entropy
ound in the separate point clouds, and instead, remain close
o constant. In contrast, when joining point clouds with small
isalignments, the joint entropy (blur) tends to increase com-
ared to the separate entropy. By making use of dual differential
ntropy measurements, our method can account for the scene
ppearance and detect small alignment errors. Additionally, the
easurements enable generalization to substantially different
nvironments without retraining.
4

3.1. Assumptions and definitions

CorAl operates on 2D or 3D point cloud pairs Pa, Pb acquired
by a range sensor such as lidar or radar. Points pk ∈ P are given in
a common fixed world frame in pk ∈ R2 or pk ∈ R3. CorAl learns a
linear decision boundary to separate aligned vs misaligned point-
cloud pairs based on features extracted without learning. During
the learning phase, point clouds are assumed to be correctly
aligned by an accurate ground truth or odometry system and free
of distortions from motion. We aim to detect small alignment
errors. Detecting large errors e.g. > 1 m in large-scale-urban or
larger than > 0.4 m within indoor environments is generally not
considered challenging for traditional metrics such as point-to-
point or point-to-line metrics, thus, it is not the focus of our work.
For notation, we define the joint point cloud Pj = Pa∪Pb; i.e., all
points in Pa and Pb together.

3.2. Joint and separate entropy measurements

In order to compute the differential entropy around a single
point, we first compute the sample covariance Σ(pk) from all
points within a radius r around pk. The differential entropy can
then be computed from the determinant of the sample covariance
according to:

hi(pk) =
1
2
ln((2πe)N det(Σ(pk))), (1)

for a multivariate normal distribution with dimension N . The
property of this metric can be visually understood from Fig. 2(a)
where each point is colored according to the differential entropy.
The metric serves as a geometric descriptor that describes the
local geometry with a single value; the differential entropy.

The MME can then be computed by averaging Eq. (1) over the
joint point cloud Pj; i.e., computing the sum and then dividing by
the number of terms as shown in Eq. (2) and (3),

Hi(Pi) =
|Pi|∑
k=1

hi(pk), (2)

Hjoint = (MME) =
Hj(Pj)
|Pj|

=
H(Pa ∪ Pb)
|Pa| + |Pb|

, (3)

where |Pi| is the number of points in the point cloud Pi. We
extend this formulation by additionally computing the entropy
in Pa,Pb separately:

Hsep =
Ha(Pa)+ Hb(Pb)
|Pa| + |Pb|

, (4)

and obtain our quality metric by subtracting the average differ-
ential entropy from the joint:

Q (Pa,Pb) = Hjoint(Pj)− Hsep(Pa,Pb). (5)

The CorAl quality metric is hence the difference in differential
entropy. The CorAl quality can also be given on a per-point level
by

qk(pk) = hj(pk)− hi(pk), (6)

where i is the point cloud (a or b) pk originates from. While the
differential entropy in Eq. (1) varies according to the shape of the
environment, the per-point entropy difference in Eq. (6) has the
property of being close to zero when point clouds are well aligned
and increase with misalignment as depicted in Fig. 2(c). The
corresponding function surface of the quality measure Q (Pa,Pb)
is depicted in Fig. 4, which demonstrates how the score in-
creases when displacing one of the point clouds in translation and
orientation.
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Fig. 4. Q has a minimum at the true position. The steepness of the sur-
face around the true alignment indicates that CorAl is sensitive to small
misalignments.

Well-aligned point clouds Pa ∪ Pb acquired in structured en-
ironments have low differential entropy for most query points
k. This is reflected by low values for the determinant of the
ample covariance. As the determinant can be expressed as the
roduct of the eigenvalues of the sample covariance det(Σ(pk)) =
1λ2λ3, we see that the measure is sensitive to an increase
n the lowest of the eigenvalues when larger eigenvalues are
onstant. For example, the entropy of points on a planar surface
s represented with a flat distribution with two large (λ1, λ2)
nd one small (λ3) eigenvalue. Misalignment changes the point
istribution in the joint point cloud from flat to ellipsoidal, which
an be observed as an increase of the smallest eigenvalue λ3.
his makes the measure sensitive to misalignment of planar
urfaces while generalizing well to other geometries. As shown
n the evaluation, the CorAl measure can capture discrepancies
etween point clouds regardless of whether these are due to rigid
isalignments or distortions that can occur when scanning while
oving (e.g., because of vibrations or sensor velocity estimation
rrors). That means that the method may also be overly sensitive
hen used together with a registration method or odometry

ramework that does not compensate movement distortion or has
low accuracy.

.3. Dynamic radius selection and outlier rejection

For well-aligned point clouds, the quality measure Q has val-
es close to zero. In this case, the distribution of per-point differ-
ntial entropies in the joint and separate point clouds are simi-
ar. The per-point entropy distributions are depicted in Fig. 5(a)
or a set of aligned and misaligned point cloud pairs when us-
ng fixed radius for computing entropies. Unfortunately, the en-
ropy in Eq. (1) is numerically unstable when the determinant
f the covariance det(Σ(pk)) is ill-conditioned, hence a small
ncrease of the determinant causes a large increase of the entropy.
5

Fig. 5. Probability distribution of per-point entropy Eq. (1) for joint and separate
point clouds when aligned (a) and misaligned (b). Aligned point clouds have
similar joint and separate entropy distributions. For misaligned point cloud pairs,
the distribution of joint entropy is shifted compared to the separate entropy
distribution. Joining misaligned point clouds tend to blur the scene, which can
be observed by an entropy increase. An exception can be seen in (a), within
region (−12,−8), where entropy mistakenly increases when joining aligned
oint clouds as described in 3.3.

ccordingly, the lowest measured entropies can increase a lot
which mistakenly indicates misalignment) even when joining
ell-aligned point clouds as depicted in Fig. 5(a).
One case where entropy mistakenly increases is when a 3d

idar observes floor regions with sparse ring patterns (due to
pace between vertical beams of the sensor). In the separate point
louds, the sparse rings give rise to ellipsoidal covariances (low
ntropy) with high uncertainty along the ring direction and low in
he other directions. In the joint point cloud, the sparsity between
ings is reduced, the computed covariances are instead planar
ccording to the floor plane, with two high eigenvalues and one
ow, and therefore have a higher entropy.

Ill-conditioned covariances occur where point density is low,
ypically for solitary points or far from the sensor where the
adius r is not large enough, e.g., to include multiple ‘‘lidar rings’’
ithin one entropy measurement, as in the example described
bove.
The ill-conditioned entropies can be mitigated by increas-

ng the radius r or making use of the options described below.
bviously, for a set of point cloud pairs, the parameters are
ypically well-calibrated (and ill-conditioned entropies have been
itigated) if CorAl can separate between aligned and misaligned
oint clouds. This occurs when the joint Hj and separate Hsep
ntropies are linearly separable. The parameter can be calibrated
y maximizing the ratio:

s = Qmisaligned(Pa,Pb)/Qaligned(Pa,Pb). (7)

A large ratio indicates that the measure is able to discriminate
between aligned and misaligned point clouds.

We propose three optional strategies to address the ill-
conditioned covariances due to variations in sampling density
originating from the sensor. Option (1) that uses a dynamic radius
can benefit both spinning lidar or radar where sparsity increase
with range. Option (2) is specifically intended to address the
characteristic ring pattern that produces variations in sparsity.
Option (3) is intended mainly for 3d point clouds.

(1): A dynamic radius enables the quality measure to include
more points far from the sensor and correctly detect alignment
and misalignment at large distances. The improvement can be
seen by comparing a fixed radius visualized in the first column
(a,e), to a dynamic radius visualized in the second column (b,f)
of Fig. 6. Radius r is chosen based on the distance d between
he point pk and the sensor location to account for that point
ensity decrease over distance. The radius is hence selected as:
= d sin(α) in the range r < r < r where α is the vertical
min max
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E

Fig. 6. Joint point clouds colored by per-point quality qk ranging from blue (aligned) to red (misaligned). The location of the point cloud origin is highlighted in
Fig. 9. Columns depict the same parameters for aligned (top) and misaligned (bottom) point clouds. We incrementally add dynamic radius, ϵ and outlier rejection.
(a,e): A fixed radius r = 0.3 m gives a low Qs ratio from Eq. (7) (Qs = 1.46), which makes it harder to learn a threshold to reliably separate aligned and misaligned
point clouds. (b,f): Dynamically adjusted radius rmin = 0.3 m, α = 1.33, rmax = 0.7 m gives (Qs = 2.93). (c,g): Adding ϵ = 10−8 yields (Qs = 4.06). (d,h): Adding
reject = 10% yields Qs = 4.3, and the point clouds are clearly separable.
a
T

Fig. 7. Polar and Cartesian spinning radar data.

resolution of the sensor provided by the data-sheet. For other
sensor types e.g. RGB-D, the resolution could be chosen similarly
according to the angular sensing resolution.

(2): Eq. (1) is modified to hi(pk) =
1
2 ln(2πe det(Σ(pk)) + ϵ)

where ϵ limits the lowest possible entropy. This makes sure that
entropy is similar for points distributed along a line and a plane.
This makes sure that entropy is similar for points distributed
along a line and a plane. The improvement can be seen in the
third column (c,g) of Fig. 6.

(3): Remove Ereject percent of points pk with the lowest en-
tropies. The effect is depicted in the rightmost column (d,h) of
Fig. 6.

3.4. Coral for spinning radar

Given the presented CorAl approach, this section describes the
additional steps used to enable CorAl to operate on spinning radar
data. It contains a short introduction to the format of spinning
radar data and proposes a novel feature extraction method that
produces a high-quality point cloud from radar data.

Spinning FMCW radar produces 360◦ sweeps on polar coor-
dinates seen in Fig. 7. The raw data is represented as a matrix
(ZNa×Nr ). The radar outputs Nr range bins (the number of columns
in Fig. 7), given the max range R, the range resolution is γ = R/Nr .
Likewise, the radar provides Na azimuth bins (rows in Fig. 7).
Each pixel (a, r) with a ∈ {1..Na}, r ∈ {1..Nr} holds the reflected
intensity and can be converted into Cartesian space as

p =
[
px
py

]
=

[
rγ cos (θ)
rγ sin (θ)

]
, (8)

where γ is the range resolution of the radar and the azimuth
angle θ can be computed via θ = 2πa/Na.

3.5. Computation of radar intensity peak (RIP)-features

From raw radar data as seen in Fig. 7, the goal is to produce
accurate point clouds suitable for alignment classification. We
6

build on top of the radar filter ‘‘k-strongest’’ [1] that efficiently
computes a mask that removes noise and keeps important land-
marks for localization. Over all the 1..Nr range bins, the k highest
intensity bins that additionally exceed the expected noise level
zmin are selected. The noise level zmin mitigates speckle noise
nd uncertain or false detections in absence of real obstacles.
he limitation of k returns per azimuth complements zmin by

mitigating multi-path reflections and receiver saturation under
the assumption that true landmarks have higher intensity.

This method efficiently provides a mask in regions around true
landmarks and generalizes well across environment types (the
same k and zmin values work well in our odometry pipeline [1]
for the road as well as underground applications). However, it
does not accurately reconstruct landmark surface locations. We
tested this representation and found that the method is un-
suitable for detecting small misalignments. For that reason, we
propose an additional step aiming to further analyze masked
regions and compute stable features located on Radar Intensity
Peaks (RIP)-features.

We aim to efficiently and accurately detect surface locations
by finding peaks within masked regions where intensity is consis-
tently high over a local neighborhood. To do so, we combine non-
maximum-suppression on the 1D intensity-range signals together
with a region strength criterion. Azimuths bins are analyzed inde-
pendently without considering neighboring azimuth bin. For each
range bin within the masked radar image, and neighboring range
bins outside the masked region, the region strength is computed
as the average intensity within a window (with size w) of neigh-
boring range bins. Second, we select all range bins where region
strength exceeds neighboring bins with the additional criteria
that region strength must exceed the expected region noise floor.
The algorithm is formally described in Alg. 1. Typical behavior
is depicted in Fig. 8. Structures such as buildings and vehicles
appear with higher intensity and give rise to the most stable
features; these are good candidates for detecting misalignment
as surface location uncertainty is low. When there are secondary
landmarks within a single beam observed with intensity, e.g. a
bush in front of a building, these give rise to features more
scarcely. Moving vehicles have little impact on the CorAl score if
driving sufficiently fast, i.e. for a radar spinning at 4 Hz, vehicles
moving faster than 14.4 km/h will be outside the CorAl radius
(r = 1 m) boundary within consecutive observations, and will
not contribute to misalignment.
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Fig. 8. Sparse radar filtering presented in Cartesian space using the RIP (Radar
Intensity Peaks) features proposed in Section 3.5. The raw radar data (black-
yellow) is first masked using ‘‘k-strongest’’ (cyan) to find areas that contain
landmarks. Stable RIP-features (black dots) are then computed accurately around
intensity peaks.

Algorithm 1: RIP-Feature extraction.
Input: ZNa×Nr Polar radar image
arameters: window size w, masked points per azimuth k, noise
ilter zmin
utput: Frip = {(r, a)i} set of range and angle tuples
1: Frip ← ∅

2: for a← 1..Na do //all azimuth bins
3: K← kstrongest( Z(a, 1..Nr ), k, zmin)
4: Initialize table S //Scores
5: for r ∈ K ∪ neighbors(K, w) do
6: S[r] = 1/(2w + 1)

∑r+w

n=r−w Z(a, n)
7: for r ∈ K do //only search masked points
8: if S[r] >= max( neighbors(r, w) ) then
9: if S[r] > zmin then
0: Frip ← Frip ∪ {(r, a)}

3.6. Self-supervised learning of alignment classification

We learn alignment classification based on our quality mea-
ure in a self-supervised fashion from an accurate sensor pose
ignal. In this paper, we use either an external ground truth
ystem or a lidar/radar odometry estimator. For each pair of scans,
e compute the quality measure 1) directly and 2) after inducing
(sensor frame) offset in position and orientation on the later

can location. This allows the system to produce positive (aligned)
nd negative (misaligned) data points for training and to learn
lassification boundaries according to the magnitude of induced
rrors. To avoid over-fitting and to produce valuable insight into
he alignment class separability based on the evaluated score
unctions, we use a simple logistic regression as a model for
lassification:

=
1

1+ e−z
,

= β0 + β1x1 + β2x2,
(9)

ypred =
{
aligned if p ≥ th
misaligned if p < th,

(10)

where p is the class probability and x1, x2 are input variables to
which we pass quality measures. For the CorAl quality presented
here, we refrain from passing the one variable quality measure
Q = Hjoint−Hsep and instead pass the joint and separate entropies
as: x1 = Hjoint , x2 = Hsep. This allows the model to learn the
mapping from H and H to alignment probability p implicitly.
sep joint

7

The model parameters in Eq. (9) (β0, β1, β2) are learned
during training. The classification probability threshold th can
be adjusted after training has been carried out in order to bal-
ance sensitivity to false-positive rate. Increasing the threshold
will cause fewer well-aligned pairs to be correctly classified as
aligned (decrease recall), but will reduce the rate of misaligned
pairs being falsely be classified as aligned (increase precision).
In our experiments we used the default threshold th = 0.5.
During training, weights of data points were adjusted inversely
proportional to class occurrence to mitigate bias.

4. Evaluation on lidar data

In this section, we present a quantitative evaluation of align-
ment quality classification with CorAl for 3D lidar data. An eval-
uation for 2D radar data will follow in Section 5.

In order to compare the method presented in this paper to
previous work related to 3D point cloud alignment assessment,
we follow the procedure of evaluation as carried out in [12]. For
the results in this section, we use an equal portion of aligned
and misaligned point clouds, where misaligned point clouds are
created by adding an offset for each point cloud pair: an angular
offset (eθ = 0.57◦ = 0.1 rad) around the sensor’s vertical axis and
a random translation (x, y) offset at a distance (ed = 0.1 m) from
the ground truth. These errors are large enough to be meaningful
to detect in various environments, yet challenging to classify.

4.1. Evaluated lidar methods

The evaluated methods; MME, CorAL, CorAl-median, NDT, Rel-
NDT and FuzzyQA are briefly summarized here together with
their most important parameters. For CorAl, FuzzyQA and Rel-
NDT, two values (that represent the quality measure) are passed
to x1 and x2, for MME and NDT, a single value is passed to x1
while x2 is set to zero. To make a fair comparison, we use a similar
radius for NDT, MME and CorAl.

MME. Mean Map Entropy (MME) as proposed by Droeschel and
Behnke [47]. The quality measure corresponds to Hjoint from
Eq. (3). The parameter is the same radius r used for computing the
per-point differential entropy. The MME is passed to the classifier
as: x1 = Hjoint , x2 = 0.

CorAl. as described in Sections 3.2 and 3.3 and in [17]. Parameters
are rmin, rmax and α to determine nearby points radius, and Ereject
to set outlier rejection ratio and ϵ for mitigating ill-conditioned
entropies. The joint and separate entropy are passed separately
to the classifier: x1 = Hjoint , x2 = Hsep, an intuition is presented
in 3.6.

CorAl-median. Hs,Hj are modified to calculate the median en-
tropy rather than the mean entropy, we hypothesize that this
modification can be more robust to outliers. Except for modifi-
cation, we used the same parameter and methodology described
in the previous paragraph.

NDT (point-to-distribution normal-distributions transform). The
NDT quality describes the likelihood of finding the points in Pb,
given the NDT representation of Pa. The method uses the 3D-
NDT [48] representation, which constructs a voxel grid over one
point cloud, and computes a Gaussian based on the points in each
voxel. The likelihood of finding the points in Pb is computed as

s =
∑n

k=1 p̃(pk)
n

, (11)

where n is the number of overlapping points, defined as those
points that fall in an occupied NDT voxel, or in a voxel that is
a direct neighbor of an occupied voxel, and p̃ is the probability
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density function associated with the nearest overlapping NDT-
cell. This is similar to the ‘‘NDT3’’ variant in [12]. The most
important parameter for NDT is the voxel size v which is set
equal to 2 ∗ r in our evaluation, as this makes the volumes used
for the sample covariance of NDT cells and the entropy in CorAl
comparable. The NDT quality s is passed as: x1 = s.

Rel-NDT. as described in [17]. This variant aims to improve the
re-utilization of learned NDT classification parameters when ap-
plied to new environments. The idea (similar to CorAl) is that
environment type is reflected in the average entropy of the scene
and can be combined with the NDT score to improve the classifi-
cation. Similar to the MME, we compute the average differential
entropy. However, instead of recomputing the sample covari-
ances around each point pk, we use the covariances directly
from the NDT representation of Pa. This is only done in over-
lapping regions and no additional parameter to NDT is required.
The NDT score s and the overlapping NDT differential entropy
(NDT-entropy) is passed as: x1 = s, x2 = NDT − entropy

FuzzyQA. FuzzyQA [14] measures the alignment quality by a ratio
ρ = AFCCD

AFPCD , where AFCCD and AFPCD are two indexes describ-
ng the points’ disposition and dispersion around fuzzy cluster
enters. In [14], two point clouds are considered to be coarsely
ligned if ρ < 1. In this paper, we pass AFCCD and AFPCD
eparately to the classifier input x1 = AFCCD, x2 = AFPCD in order
to learn a generalizable separator.

4.2. Qualitative evaluation, live robot data

First, we present qualitative results from real-world data in
a warehouse environment. A forklift equipped with a Velodyne
HDL-32E 3D laser scanner was manually driven at fast walking
speed in the warehouse depicted in Fig. 9. The environment cov-
ered in this data set varies from large and open areas with walls
in line of sight to small and narrow aisles between shelf racks. To
generate ground-truth alignments for the warehouse dataset, we
first aligned the point clouds using a scan-to-map approach [8].
We have then inspected the alignment between subsequent scans
and found that at least 40/484 (8.3%) point clouds were impaired
by rigid misalignments or non-rigid distortions from vibrations
and motion to the extent that these could be visually located.
Alignment classification was then performed on the remaining
scans by inducing errors as described in Section 4. We used the
following parameters as they provided a relatively high value of
Qs for the first scan pair in the dataset: α = 0.92◦, Ereject = 0.2,
rmin = 0.2 m, rmax = 1.0 m and voxel size v = 2rmin = 0.4 m.
We found that CorAl-mean, MME and NDT reached an accuracy of
96%, 70% and 99% respectively. In this case, NDT performs slightly
better than CorAl. We believe that the relatively lower result is
due to the experimental setup. CorAl is highly sensitive to low
quality in training data. In this case, even after removing the
worst data points in the ground truth set, the level of vibrations
from the worn-out wheels remain high in a large number of data
points used for training and evaluation. This makes it challenging
to learn the detection of small errors using the CorAl quality
measure. Whether this is high sensitivity is the desired behavior
depends on the application.

4.3. Quantitative evaluation, ETH benchmark data set

Our main quantitative evaluation of CorAl’s performance on
3D lidar point clouds is done by using the public ETH registration
dataset [49]. It contains several sequences representing a wide
variety of environments, which will serve us to evaluate how
well CorAl generalizes across different kinds of them. Specifically,
this dataset includes 3 sequences in structured environments
8

Fig. 9. Data acquired by a truck in a warehouse environment. The sensor
trajectory is drawn in red. The environment in the figure is 50 m × 50 m and
he sequence length is 102 m. In the first segment of the trajectory, starting
t the bottom left, the walls are clearly visible. The final segment is located
etween aisles where walls are typically out of sight and the sensor observes
ore complex structures such as shelves. The truck has worn out slightly oval
heels which introduces a large degree of vibrations, hence alignment quality

s expected to be low.

Apartments, ETH Hauptgebaude, Stairs), 3 sequences in semi-
tructured environments (Gazebo in summer, Gazebo in winter,
ountain plain) and 2 challenging sequences in unstructured
nvironments (Wood in summer, Wood in autumn). In Figs. 10–
2, the training results for structured environments are shown in
lue, the ones for semi-structured environments in brown, and
he ones for unstructured environments in green. Each sequence
ontains between 31 and 47 scans acquired from stationary po-
itions. The dataset contains accurate ground truth positions,
equired to evaluate the different methods. In order to make the
valuation fairer, more realistic, and applicable to real applica-
ions, we downsampled the original dense point clouds using a
oxel grid of 0.08 m. In all the training experiments, CorAl has
een run on an Intel Core i7-7820X desktop CPU, achieving an
verall run-time of 0.246 ± 0.095 seconds per point cloud pair.
lso, since this dataset has less variation in sampling density
ompared to the warehouse one employed in Section 4.2, we used
fixed radius r = 0.3 m and set Ereject = 20% and ϵ = 0. Finally,
he NDT voxel size was set equal to two times the CorAl radius,
.e, v = 2r = 0.6 m. This way, the diameter of influence for CorAl
nd the width of NDT cells are similar.
In these conditions, we carried out three different kinds of

raining, which are aimed at showing how the proposed CorAl
ethod can achieve generalization. Training has been performed
ith increasing difficulty, as explained below.

.3.1. Separate training
First, we evaluate the capability to learn classification in a spe-

ific type of environment. The classifiers were trained and eval-
ated on each sequence separately, using 5-fold cross-validation.
his evaluation serves as a reference for the cross-environment
valuations below. Results are shown in Fig. 10. We found that
ll methods except FuzzyQA performed well in structured en-
ironments. For instance, MME scored around 90%–100%, which
learly indicates that even a method that is highly influenced
y the environment can successfully assess alignment quality if
he environment is structured and not changing substantially.
n contrast, we did not expect that FuzzyQA would achieve a
ood classification performance since it is specifically designed
o classify coarse alignment.

In the semi-structured and unstructured sequences, only CorAl
nd CorAl-median performed well, with consistently >90% accu-
acy, even in the most challenging sequences. All other methods



D. Adolfsson, M. Castellano-Quero, M. Magnusson et al. Robotics and Autonomous Systems 155 (2022) 104136

5

a
q
t
g
(
o
c

4

a
m
w
w
s
d
b
r
p
t
p
i

4

m
t
e
t

1

Fig. 10. Separate training. The overall accuracy was CorAl: 98%, CorAl-median:
98% FuzzyQA: 53% MME: 77% NDT: 78% Rel-NDT: 80%.

Fig. 11. Joint training. Overall accuracy CorAl: 96%, Coral-median: 95% FuzzyQA:
2% MME: 60% NDT: 75% Rel-NDT: 78%.

re only slightly better than random, except for the gazebo se-
uences. Rel-NDT slightly outperforms NDT, however not consis-
ently. Both NDT methods performed decently (77%–90%) in the
azebo sequence, but poorly in the unstructured Wood sequences
60%–65%), indicating that NDT requires at least some structure
r surfaces free from foliage to be effective as an alignment
orrectness measure.

.3.2. Joint training
The second test evaluates how the methods are able to learn

lignment classification when trained in a variety of environ-
ents. To do that, the methods need to be versatile. The training
as performed on all the ETH sequences together, and evaluation
as then done on each sequence individually. The results are
hown in Fig. 11. As can be expected, the accuracy of all classifiers
ecreased compared to the previous test. CorAl still performs
est, with an accuracy of 85%–100% in all cases. CorAl-median
eached a slightly lower accuracy compared to CorAl. Rel-NDT
erformed better than NDT in most cases, however not consis-
ently. The generally high accuracy of CorAl indicates that it is
ossible to find general parameters that make the method valid
n a range of substantially different environments.

.3.3. Generalization to unseen environments
The final test evaluates how classifiers perform in environ-

ents with different characteristics than those observed in the
raining set. We trained and evaluated different sequences and
nvironments. The 3 structured environments were used for

raining and the remaining 5 (semi-structured and unstructured) c

9

Fig. 12. Evaluation on unseen environments. Overall accuracy: 83%, CorAl-
median: 79% FuzzyQA: 50% MME: 54% NDT: 72% Rel-NDT: 72%, In structured
and semi-structured environments: 95%, Coral-median: 88% FuzzyQA: 50% MME:
56% NDT: 78% Rel-NDT: 79%.

were used for evaluation and vice versa. The classification ac-
curacy is depicted in Fig. 12. When trained on structured and
evaluated on semi-structured environments, CorAl performed
accurately (85%–98%) and other methods performed close to
random except NDT for Gazebo summer (74%). No method gen-
eralized well when training on structured data and evaluated on
unstructured environments. On the other hand, learning from
semi-structured and unstructured environments was enough to
afford very high accuracy in structured environments with CorAl
— very close to what was attained with joint training on all se-
quences. The previous joint evaluation shows that it is possible to
train a model that is simultaneously accurate in all environment
types. Hence, we believe that the reason the classifier trained in
a structured environment does not generalize to an unstructured
environment is that the model overfits when not trained with
sufficiently diverse and challenging data.

5. Evaluation of large-scale radar data

In this section, we present a thorough evaluation of the prob-
lem of alignment correctness classification using data acquired
by different spinning radars. In these experiments, we have em-
ployed both CTS350-X and CIR2014-H models by Navtech. We
highlight multiple challenges in alignment correctness classifica-
tion of radar data and consider the impact of practical challenges
such as variation of parameters, distance between scans, and er-
ror magnitudes. Similar to the generalization training carried out
in Section 4.3, we again use datasets with different characteristics
for training and testing in order to understand how CorAl general-
izes across different environment types. We compare our method
to recently published radar-specific baselines (Section 5.1).

Currently, there exist four public datasets for spinning radar
localization research: Boreas [50], Radiate [51], Mulran [52] and
the most established Oxford Radar RobotCar dataset [53]. We
selected Oxford (Fig. 14) and Mulran (Fig. 15) which both have
accurate ground truth positioning and similar sensor range reso-
lution (0.0432 m and 0.0595 m respectively). Additionally, Mul-
Ran contains a diverse variety of surrounding environment types
including urban, mountain, and fields which allows us to test
how the methods generalize outside of urban environments. In
Section 5.5 we used the sequence ‘‘10-12-32’’ from Oxford and
‘‘KAIST02’’ from Mulran. In all other experiments, each data point
and deviation is computed over the sequences 10-12-32, 18-14-
4, 18-14-46 and 18-15-20 from the Oxford dataset. Both datasets
ontain a variety of weather conditions and traffic from vehicles,
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Fig. 13. Investigation of error distribution in radar odometry.

Fig. 14. Locations traversed in the urban Oxford dataset.

pedestrians and bikers. Hence these sequences constitute realistic
urban scenarios.

To make the method evaluation more realistic for urban ap-
lications, we generate 4 misalignments symmetrically around
ach aligned data-point: two in the longitudinal directions of
he driving direction (forward and backward) where localization
ncertainty due to motion and landmarks is generally higher,
nd two in the lateral direction (left and right) with lower un-
ertainty. Training weights and evaluation metrics are balanced
ccordingly.
Depending on the application and sensor, various error levels

an be of interest. E.g. odometry is expected to be more accurate
ompared to loop closure and relocalization and requires detec-
ion of smaller errors. We produced the position error distribution
f the currently most accurate method for radar odometry esti-
ation CFEAR, the distribution is depicted in Fig. 13. The 0.995
uantile corresponds to a longitudinal and lateral error of 0.29 m
nd 0.12 m, respectively. Detecting errors above this point (>
.29) m would be meaningful for the task of odometry. These
re larger error levels compared to what we considered in our
revious evaluation on lidar (0.1 m) in Section 4. Using the same
tep size between error levels as in [12], we define small, medium
nd large errors as 0.3 m, 0.5 m and 0.7 m respectively. These
rrors are higher than the ones defined for lidar sensors, which
s necessary as localization uncertainty is expected to be higher,
.g. due to the larger scale, higher motion and low spinning rate
f radar used in our experiments. For a vehicle moving at 50
m/h with a radar spinning at 4 Hz, the motion distortion from
ranslation only is 3.5 m between the first and last segment of a
can unless carefully compensated for.

.1. Evaluated radar methods

Here we give a brief introduction of all compared methods for
eature extraction, quality measure and parameters. In all cases,
10
Fig. 15. Examples of semi-structured regions in the MulRan dataset.

e have compensated for motion distortion effects as described
n [1], and features within a minimum range of 2.5 m are removed
n order to discard false detections located on the experimental
etup itself.

en2018. A method for extracting radar features and estimat-
ng ego-motion proposed by Cen and Newman [41]. We use
heir method for extracting features from intensity gradients and
eaks with the improved configuration described by Burnett [38],
here the probability threshold is increased to zq = 3.0 and

a Gaussian filter is added with σ = 17 as described in [38].
We do not carry out data association as described in the original
publication but instead perform a radius search and compute the
point-to-point quality measure with association radius radius =

m. The sum of point-to-point distances is normalized by the
umber of points and passed to x1.

FEAR. current state-of-the-art in Radar odometry estimation [1].
e use the CFEAR-feature extraction method, with the qual-

ty measures (P2P, P2L and P2D). Radar data is first filtered
sing k-strongest as described in Section 3.5 by first applying
he k-strongest filter and then using a grid-based approach that
stimates a set of oriented surface points for each grid cell that
ontains points. In our experiments, we used the same param-
ters as described in [1] except with minor changes to zmin =

0 and radius = 3 m for consistency with Cen2018. For this
ethod, we extend the logistic regression model with a third

nput dimension x3 to incorporate more available information.
pecifically, the absolute score, the number of correspondences
nd the normalized score are passed to x1, x2 and x3 respectively.

orAl-radar (ours). We set rmin = rmax = 1, Ereject = 0 and
ϵ = 0. CorAl-Radar extends the previous parameter CorAl set
with window size w = 2, k = 12 and zmin = 70 for computing
RIP-features (Section 3.5). The latter parameters (k and zmin have
the same meaning as in the method CFEAR and are fixed in
our experiments and equal for CFEAR and CorAl. The joint and
separate entropy are passed separately to the classifier: x1 =
Hjoint , x2 = Hsep as described in Section 3.6.

5.2. Method and performance analysis

We start our evaluation by studying the radius parameter.
While a low radius is required to detect the smallest alignment
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Fig. 16. Heat map for the classification accuracy obtained by using the CorAl
method, as a function of the translation error and the association radius
employed. While the radius is optimally chosen slightly larger compared to the
translation maximum error CorAl intends to detect, r = 1 m provides good
capabilities to detect errors larger than 0.2 m.

Table 1
Computation time (milliseconds) for feature extraction and quality measure.
Method Feature extraction Quality measure Threads

Mean [ms] Std. dev. (σ ) Mean [ms] Std. dev. (σ )

CFEAR-P2P 3.93 0.10 0.69 0.04 Single
CFEAR-P2L 4.88 0.08 0.83 0.09 Single
CFEAR-P2D 3.92 0.08 0.75 0.05 Single
CEN2018-P2P 14.21 0.25 3.05 0.41 Multiple
CorAl (ours) 2.07 0.03 3.47 0.29 Single

errors, a too conservatively chosen radius will make larger errors
more challenging to detect. This is because the computation of
entropy is only sensitive to the displacement of points within
the radius. Hence is the capability to detect errors with different
magnitudes is related to the selection of radius as seen in Fig. 16.
Generally, the radius should be chosen larger than the maximum
error to detect. however as confirmed by our evaluation, detect-
ing very large alignment errors > 1 m is not a challenging task
nd CorAl can therefore be complemented with a quality metric
uch as point-to-point or point-to-line. We found that a radius set
o r = 1 m provides a good trade-off and allows the detection of
airly large errors.

The runtime performance of CorAl is shown in Table 1. All
iming statistics have been computed out on an Intel i7-11850H
aptop CPU. All representations and quality metrics are efficient
o compute (<5 ms single-threaded) except Cen2018 which runs
t 14 ms with a multi-thread implementation.

.3. Detecting errors with various magnitudes

We aim to investigate the extent to which errors of different
agnitudes ranging from 0.05 up to 0.9 meters can be detected.
he performance is quantified using accuracy and the area un-
er the ROC curve (AUC). The obtained results are depicted in
ig. 17. In these plots, we report results for two classes of scans,
ith varying distances between scans: scans taken at least 0 m
part (consecutive scans) and scans taken at least 10 m apart.
n general, these results show that the proposed CorAl method
chieves the best classification accuracy and AUC in the evalu-
ted range when the spacing between scans is low. Under these
11
Fig. 17. Accuracy and AUC vs translation error. (a) CorAl is the most accurate
and can even detect small alignment errors of 0.3 m with >90% accuracy when
istance between scans is low. CFEAR-P2L requires 0.2 m larger errors to reach
imilar level of accuracy. For large scan distances (less overlap), CFEAR-P2L is
he most accurate with 85% accuracy. (b) CorAl generally achieves the best
erformance (well above 90% even for small translation errors) when distance
etween scans is low. For large scan distances, CFEAR-P2L is the most robust
ethod for any translation error.

onditions, none of the other methods reach similar performance.
he next-best method is CFEAR-P2L, which robustly detects large
ranslation errors but only when they are greater than 0.7 m.
hen scan spacing is large (10 m), CorAl is still the most accurate

or small errors (less than 0.4 m) although the accuracy achieved
s not very high. A summary of these results can be found in
able 2.
Orientation errors are evaluated separately as depicted in

ig. 18. Such errors are added here in the same way as in the
ase of evaluation on lidar data, i.e., by adding an angular offset
θ around the sensor’s vertical axis. In general, the CFEAR and
en2018 quality metrics demonstrate similar or improved perfor-
ance compared to CorAl for orientation errors. We believe this

s because orientation errors displace observations proportionally
o the distance of observation. At large distances, the conservative
ata association of CorAl makes the metric less sensitive, unless
ombined with the optional parameter that dynamically increases
adius accordingly.



D. Adolfsson, M. Castellano-Quero, M. Magnusson et al. Robotics and Autonomous Systems 155 (2022) 104136

t

a
w
0
d
l
a
p
i
m

Fig. 18. Classification accuracy vs orientation error. The radius parameter is set
o r = 3 m.

Table 2
Quality of classification results corresponding to each method used in this work,
versus different translation errors. The values reported for each configuration
are the mean accuracy and mean AUC, respectively, which also correspond to 0
meters of scan overlapping.
Method Translation error

Small (0.3 m) Medium (0.5 m) Large (0.7 m)

CFEAR-P2P 0.59/0.61 0.69/0.77 0.85/0.95
CFEAR-P2L 0.66/0.77 0.89/0.95 0.97/0.99
CFEAR-P2D 0.57/0.66 0.76/0.85 0.89/0.96
CEN2018-P2P 0.52/0.54 0.56/0.60 0.61/0.68
CorAl (ours) 0.91/0.98 0.97/1.00 0.99/1.00

5.4. Variation in distance between scans

We have also carried out another set of experiments aimed
t analyzing the impact of scan spacing distance. In this case,
e consider two different levels of translation errors (0.3 and
.6 m). Detecting small errors from scans separated by large
istances is challenging due to dynamics changes, lower over-
ap, and because sensor characteristics make observed landmarks
ppear differently from different perspectives, a phenomenon
reviously discussed in the literature [2]. As expected, the results
n Fig. 20 show that classification accuracy is reduced for all
ethods when scan spacing is increased. Despite this, CorAl was
12
Fig. 19. Bottom (red) and top (blue) scans acquired with small (a) and large
(b) separation in distance. When distance is high, scans incorrectly appear to
be misaligned due to a high level of beam divergence in current radar sensors.
The impact is higher when landmarks are observed from different angles, which
occur more often when the distance between scans is large.

able to achieve 87% accuracy for 0.6 m errors at 5 m spacing. After
7 m, CFEAR-P2L accuracy surpasses CorAl, which accuracy re-
duces more quickly We believe the worse performance for larger
scan spacing depends on radar-specific challenges as depicted in
Fig. 19. When spacing is large, walls appear different due to beam
divergence. CorAl is more sensitive to small errors and hence not
expected to perform well in this scenario.

5.5. Generalization across environments

Similarly to the evaluation of generalization capabilities for
lidar data (Section 4.3.3), we are interested in comparing how the
proposed approach can classify the scans when the training and
test data sequences are not from the same type of environment.
We used the urban Oxford dataset (Fig. 14) and the partly semi-
structured Mulran dataset (Fig. 15). The accuracy for Oxford and
Mulran is depicted in Fig. 22. We make the same observation as in
the lidar generalization experiments in Section 4.3; classification
of a method trained from a semi-structured (more diverse) data
set will generalize better.

To train with the structured data (Oxford) and testing on
the semi-structured data (Mulran) the accuracy obtained is 91%
compared with 96% if the testing and training data is switched.
If the datasets are considered fully separately the accuracy for
Oxford and Mulran is 97.9% and 95.7% respectively. ROC curves
are provided in Fig. 21, which also illustrates the generalization
capabilities.

6. Conclusions

In this paper, we presented CorAl, a principled and intuitive
quality measure and self-supervised system that learns to de-
tect small alignment errors between pairs of previously aligned
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Fig. 20. Accuracy and AUC vs scan spacing (overlap). Increasing distance
etween scans makes classification more challenging. CorAl is most accurate for
mall errors while CFEAR-P2L is more accurate when distance between scans is
igher.

oint clouds. CorAl uses dual entropy measurements found in the
eparate point and in the joint point cloud to obtain a quality
easure that substantially outperforms previous methods on the

ask of detecting small alignment errors within a benchmarking
idar dataset, and within a large-scale urban dataset for spinning
adar.

In this work, we proposed a two-step filtering strategy (Sec-
ion 3.5) that operates on challenging radar data and produces a
igh-quality point cloud. By combining our filtering method with
orAl we were able to detect small alignment errors in urban
ettings using only a spinning radar. We found the method to
e accurate in a wide range of environments and can generalize
o new unseen environments without retraining. Using a roof-
ounted radar within realistic trafficked urban scenarios, we
chieve up to 98% accuracy in detection of 0.5 m errors when
rained in the same environment, and up to 96% accuracy when
rained on another environment type. Our experiments on both
idar and radar data demonstrate that CorAl achieves a high level
f generalization between structured and semi-structured envi-
onments. We also found that learning from more challenging
ess structured environments results is advantageous for gener-
lization. In our lidar experiments, we even found that CorAl
as able to generalize from unstructured (woods) to structured

ndoor environments. However, none of the evaluated methods
eneralized well when trained in structured environments only
13
Fig. 21. Comparison where methods are trained and tested on the same
(Intra dataset) and separate (Generalization) datasets with varied discrimination
threshold. We found that CorAl is the most accurate in both environments
regardless of where the method is trained. For our proposed method, the best
level of generalization is achieved when training on the semi-structured dataset
MulRan and testing on the structured Urban Oxford dataset.

and evaluated in an unstructured environment, and this remains
a challenging problem.

We believe that the presented system has great potential
to serve as an alignment quality tool for point clouds and can
improve localization robustness by equipping odometry, relocal-
ization, and loop closure systems with the capability of introspec-
tively detecting small errors in diverse environments.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.



D. Adolfsson, M. Castellano-Quero, M. Magnusson et al. Robotics and Autonomous Systems 155 (2022) 104136

t
d

R

Fig. 22. Classification accuracy of small errors (0.5 m) for a fixed discrimination
hreshold (th = 0.5) when training and evaluating on the same dataset (intra
ataset) and when training and evaluating on different datasets (generalization).
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